Duality in infinite dimensional linear programming

نویسندگان

  • H. Edwin Romeijn
  • Robert L. Smith
  • James C. Bean
چکیده

We consider the class of linear programs with infinitely many variables and constraints having the property that every constraint contains at most finitely many variables while every variable appears in at most finitely many constraints. Examples include production planning and equipment replacement over an infinite horizon. We form the natural dual linear programming problem and prove strong duality under a transversality condition that dual prices are asymptotically zero. That is, we show, under this transversality eondition, that optimal solutions are attained in both primal and dual problems and their optimal values are equal. The transversality condition, and hence strong duality, is established for an infinite horizon production planning problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On linear vector optimization duality in infinite-dimensional spaces∗

In this paper we extend to infinite-dimensional spaces a vector duality concept recently considered in the literature in connection to the classical vector minimization linear optimization problem in a finite-dimensional framework. Weak, strong and converse duality for the vector dual problem introduced with this respect are proven and we also investigate its connections to some classical vecto...

متن کامل

Infinite-dimensional Linear Programming Approach to Singular Stochastic Control

We consider a multidimensional singular stochastic control problem with statedependent diffusion matrix and drift vector and control cost depending on the position and direction of displacement of the controlled process. The objective is to minimize the total expected discounted cost. We write an equivalent infinite-dimensional linear programming problem on a subspace of the space conjugate to ...

متن کامل

An elementary approach to linear programming duality with application to capacity constrained transport∗

An approach to linear programming duality is proposed which relies on quadratic penalization, so that the relation between solutions to the penalized primal and dual problems becomes affine. This yields a new proof of Levin’s duality theorem for capacity-constrained optimal transport as an infinite-dimensional application.

متن کامل

Some Duality Results in Grey Linear Programming Problem

Different approaches are presented to address the uncertainty of data and appropriate description of uncertain parameters of linear programming models. One of them is to use the grey systems theory in modeling such problem. Especially, recently, grey linear programming has attracted many researchers. In this paper, a kind of linear programming with grey coefficients is discussed. Introducing th...

متن کامل

Duality – A Lagrangian Approach

The objective of this module is to understand key problems that arise when moving from finite dimensional linear programs to infinite dimensional linear programs. Students are introduced to the theory of linear programming in 36900. In 36900 the primary focus is on linear and integer programs with a finite number of constraints and variables. However, there are many applications where the numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 53  شماره 

صفحات  -

تاریخ انتشار 1992